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We have investigated the time evolution of a vectorial modelC system following a temperature quench from
the disordered state into the order-disorder coexistence region, with numerical Langevin simulations. The
system is characterized by a vectorial, nonconserved order parameter coupled to a conserved quantity such as
a concentration. Two different ordering mechanisms are observed. If the mean concentrationco is co.1/2,
then the minority phase is theorderedphase and growth is driven by long-range diffusion. On the other hand,
if co,1/2, then it is thedisorderedphase that is in the minority. In this case, defects of the order parameter
~vortices! are strongly coupled to that of the position of the disordered phase. Growth takes place primarily via
the diffusion and coalescence of the defects, giving rise to ann51/4 growth exponent over a significant time
regime.@S1063-651X~96!09911-4#

PACS number~s!: 64.60.Cn, 05.70.Ln

I. INTRODUCTION

In recent years, there has been great interest in the dynam-
ics of defects created during a symmetry-breaking phase
transition@1#. Typically, an instability produces topological
defects following a quench into the broken symmetry phase.
The subsequent time evolution, or dynamics of ordering, is
characterized by an annealing away of these defects@2,3#:
the free energy of the system is reduced as the density of
defects decreases. The nature of the order parameter, to-
gether with the conservation laws associated with it, deter-
mine the growth laws of the characteristic length scales of
the system, as well as the associated scaling functions.

The growth laws and scaling function for systems charac-
terized by a single order parameter have been, for the most
part, determined and understood@3#. For example, for a sys-
tem with a scalar, nonconserved order parameter~modelA
@4#!, the relevant topological defects are the domain walls or
interfaces separating the different ordered phases. The an-
nealing away of these interfaces is driven by curvature, and
the average domain sizeR(t) obeys a power-law growth
R;tn with growth exponentn51/2 @5#. If the system in-
volves a scalar, conserved order parameter~modelB), then
growth takes place via the classical Lifshitz-Slyozov mecha-
nism of long-ranged diffusion with growth exponentn51/3
@6#.

However, more complicated phenomenology arises when
the system is characterized by more than one order param-
eter. In such cases, defects of a more complex nature form,
and the nature of the dynamics is changed significantly. The
simplest of such cases arises when the system is character-
ized by both a scalar, nonconserved order parameter and a
scalar, conserved quantity such as a concentration. This situ-
ation may describe, for instance, metal alloys in which the
nonconserved order parameter is associated with the symme-
try of the alloy@7#. When such a system is quenched into the
order-disorder coexistence region of its phase diagram, two

types of interfaces are formed and, for a given concentration,
the ratio of the associated surface tensions determines the
morphology@8#.

In this paper, we investigate the interesting changes that
arise in such a system, when the nature of the nonconserved
order parameter changes from that of ascalar, to that of a
vector. This change is important because systems with a vec-
tor order parameter generate a different type of defects,
namely, vortices, which in this case are coupled to the do-
main walls generated by the concentration variable. As we
shall discuss, this changes the dynamics of the system over a
significant time regime. Such a simplified model should be
relevant for a number of experimental systems. For instance,
a mixture of isotropic fluids and two-dimensional nematics
@9# and smectic-C liquid crystal thin films@10#, constrained
by surfaces so that the director is approximately planar may
be adequately represented by this model. Wonget al. @9#
have in fact studied the coarsening behavior of two lyotropic
liquid-crystal systems that were quenched from the isotropic
phase into either the nematic phase or a region of coexistence
between nematic and isotropic phases. In the coexistence re-
gion, both in two and three dimensions, they observed Po-
rod’s power-law behavior for the structure factor:
S(q);q2(d11) for large wave vectorsq, whered is the di-
mension of the system. This has been understood in terms of
the scattering from the domains walls. Other systems, where
our model may apply, include thin films of He3-He4 mix-
tures, mixtures of ferro- and paramagnets, and mixtures of
smectic-A and smectic-C liquid crystals. We also note that a
similar model was used to investigate growth of polycrystal-
line material@11#. In the latter study, the vector field was
used to model the orientation of the local lattice structure,
and the concentration variable the local atomic composition.

The system we consider exhibits both a stable disordered
and a stable continuously degenerate ordered phase@8#.
Thus, the free-energy minimum corresponding to the high-
temperature minimum is also a minimum after a quench into
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the order-disorder coexistence region, so that only very large
fluctuations in the vectorial order parameter could drive the
system to the degenerate ordered state. However, if one al-
lows for differences in an associated concentration field, or
some other related quantity, then a spinodal region can be
created and phase separation will take place following a tem-
perature quench. A situation like this is described by a model
C system@4#, and is to be contrasted with that of a model
A andB system, where the disordered minimum of the free
energy becomes unstable after a quench. In that case, the
system is driven towards the equilibrium ordered states,
which have a reduced symmetry. In modelC systems, the
disordered state is still stable after a quench, but the coupling
of the order parameter to a conserved quantity such as a
concentration makes the disordered phase unstable in the as-
sociated spinodal region. Transitions to the ordered states
therefore become allowed.

The high-temperature, disordered phase of a two-
dimensional modelC system with a vectorial order param-
eter has continuous SO~2! symmetry. Suppose that such a
system is quenched into the ordered part of the phase dia-
gram ~i.e., below thel line, but above the first-order coex-
istence lines!, and that the coupling between the order pa-
rameter and concentration is very weak. Then, the
continuous symmetry would be broken into theZ1 symmetry
and the system would behave like a planar,XY model. The
typical topological defects of this system are vortices, i.e.,
pointlike disclinations with an integral winding number@12#.
These systems have been studied in the interesting context of
two-dimensional melting, where the mechanism driving the
phase transition from disorder to order is the pairing, and
annihilation, of individual vortices and a continuous transi-
tion takes the system to quasi-long-range order@13#. Re-
cently, there has been a number of computational investiga-
tion of theXYmodel and other related systems@14–17#. The
work by Pargellis, Green, and Yurke@14# includes an experi-
mental realization of the planarXY system by means of a
confined nematic liquid crystal. When the spins are allowed
to relax via linear damping from an initial random configu-
ration, the system is expected to anneal diffusively so that
the squared correlation length is proportional to time; assum-
ing randomly distributed defects, the expected defect decay
exponent isn51. However, as Yurkeet al. @18# pointed out,
due to the presence of frictional forces, there exist logarith-
mic corrections to these scaling laws.

In this paper, we shall show how the usualXY planar
model scenario gets dramatically modified when one allows
coexistence with a disordered phase, in the presence of a
concentration variable, i.e., we will investigate quenches into
the order-disorder region of the phase diagram. We show that
there exists a parameter regime in which the defects of the
order parameter~the vortices! couple strongly to the position
of the disordered phase. This changes the dominant mecha-
nism of ordering from that of long-range diffusion or
Lifshitz-Slyozov growth to one of defect annihilation over a
significant time regime.

A brief summary of the structure of the paper is as fol-
lows. Section II discusses the model and gives details of the
simulations; in Sec. III, we present the results with an em-
phasis upon the droplet morphology created and their

growth. Section IV is reserved for a summary and conclu-
sions.

II. MODEL

We begin with the Ginzburg-Landau free energy@19#

F@f,cW #5E dr H 12 l c2U“cW ~r !U21 1

2
lf
2 @“f~r !#21 f ~f,cW !J ,

~1!

where u“cW u25( i51
m(“c i)(“c i) and f (f,cW ) is the bulk

free-energy density,

f ~f,cW !5 1
2 r ucW u21uucW u41vucW u6

1 1
2 xn

21f21gfucW u22Df. ~2!

Here cW is a vectorial, nonconserved order parameter with
m components,f is the coupled conserved concentration,
and r ,u,v,xn ,g,l c , and lf are system parameters with
(v,xn ,l c ,lf.0). D is the chemical potential related to the
concentration. The phase diagram for this system is well
known @19#. A mean field analysis reveals that the system
has a line of first-order phase transitions at

r̃[r12Dgxn50, ~3!

ũ[u2 1
2 g2xn.0. ~4!

This line ends in a tricritical point atr̃50,ũ50. There is also
a line of second-order phase transitions atr̃5 r̃ 0[(ũ 2/2v)
and ũ,0. We investigated the dynamics of this system fol-
lowing a temperature quench from the disordered phase
( r̃.0, ũ.0) into the coexistence region. The units of en-
ergy, concentration and order parameter of this model may
all be rescaled to give a dimensionless free-energy density
@8#

f ~c,y!5uyu2~12uyu2!21a~c1uyu221!21
l c
2

2
~“c!2

1
l y
2

2
u“yu2. ~5!

Herey andc are the rescaled vectorial order parameter and
concentration, respectively. The model is given in terms of
three positive constants:a, l c , and l y . We fix a54 and
select the unit of length such thatl cl y51, but allow for
variations inl y . The local free energy is a three-dimensional
function with coexisting minima in (c,uyu)5(1,0) ~the dis-
ordered phase! and (c,uyu)5(0,1) ~a continuously degener-
ate ordered phase!.

The dynamics of the phase separation process is described
by the coupled Langevin equations
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where jc and jy are stochastic variables obeying the
fluctuation-dissipation relation. In this study, we neglect the
thermal noise@20# and set the mobilitiesGc5Gy51.

The Langevin equations were solved numerically using
Euler’s method on two-dimensional grids of linear size
L51024 and 512, with periodic boundary conditions. The
spatial mesh size and integration time step were chosen to be
Dx51.0 andDt50.01, respectively. Further reduction of
these sizes did not change the solutions in any significant
way. While systems of different sizes were simulated, most
of our results were obtained for systems of lengthL5512,
which displayed good self-averaging properties. The initial
values of each component ofy were chosen from a Gaussian
distribution of zero mean and a second moment of 0.1, while
the initial values of thec’s were specified by a similar
Gaussian distribution, but centered about the valueco . To
probe the different morphologies, single runs were carried
out for c051/3 and 2/3, andl y50.8, 1, 2, and 4. At least five
independent runs were performed for each of the sets of pa-
rameters:c051/3, l y51; andc051/3, l y54.

For each simulation, we computed the pair correlation
functions for both the conserved variablec and the noncon-
served order parametery. These are, respectively, defined
as Cc(r ,t)5^@c(0,t)2c0#@c(r ,t)2c0#& and Cy(r ,t)5
^y(0,t)•y(r ,t)&, where the angle brackets indicate an en-
semble average. With the circularly averaged values of these
correlation functions, we were able to calculate two typical
length scalesRc(t) and Ry(t) associated with each of the
variables:Rc(t) was defined as the first zero of the pair cor-
relation functionCc(r ,t), andRy(t) as the value ofr for
which Cy(t) takes on half of its value at the origin in the
scaling regime. Two other distances obtained from the cor-
relation functions areLc(t)51/@12Cc(0,t)/Co#, where
Co5c0(12c0) is the theoretical value ofCc(0,t) in the scal-
ing regime; and Ly(t)521/@12Cy(0,t)/Yo#, with
Yo512c0. These distances are similar to the inverse perim-
eter densities used in other simulation studies as a measure
of the average domain size. Other quantities computed in-
clude the mean radius, the radius of gyration, and the topo-
logical charge of each domain.

III. RESULTS AND DISCUSSION

A. Morphology

In this section, we discuss the role of the continuous sym-
metry of the ordered phase on the domain morphology. To
better understand the phenomenology associated with a vec-
torial modelC, we first review the scalar modelC and the
planarXYmodel, concentrating on the relevant physical fea-
tures in these systems that contribute to the morphology of
the vectorial modelC.

We begin by discussing the results of the scalar model
C ~see, for example,@8# and references therein!. In this case,

the ordered phase corresponds toc50, y561, and the dis-
ordered phase toc51, y50. It is now well established that
the morphology depends upon whether the minority phase is
ordered or disordered, as well as on the wetting properties of
the interfaces. Forc0.1/2, the minority phase is ordered and
forms isolated droplets. The order parameter inside each of
these isolated droplets can take on either a positive or nega-
tive value, irrespective of the value inside other domains. In
this case, the degeneracy of the ordered state does not play a
qualitatively important role in the ordering process. Simi-
larly, changes in the wetting properties of the interfaces are
also not dramatic. A completely different situation arises
when the minority phase is the disordered one (c0,1/2). In
this case, an ordered domain can grow to an infinite size,
percolating throughout the system. Long-range order is not
achieved, and order-order interfaces can persist in the sys-
tem, even at very late times. The morphology itself depends
upon the wetting properties of the interfaces in important
ways. In the complete wetting regime (l y.0.79), two or-
dered domains having different signs in the order parameter
are separated by a macroscopic, disordered wetting layer.
The disordered domains tend to surround the ordered do-
mains and percolate throughout the system. Their morphol-
ogy corresponds to that of elongated stripes with a few
shrinking droplets, instead of a droplet morphology. In the
partial drying regime (l y,0.60), an ordered domain prefers
to be in contact with another ordered domain, instead of a
disordered one. The disordered domains therefore no longer
surround the ordered domains, and therefore adopt a more
compact shape. The intermediate case (0.6, l y,0.79) corre-
sponds to the partial wetting regime.

For the vectorial modelC, the situation is different. As in
the planarXY model, the directory may be thought of as
representing a two-dimensional magnetization vector~or a
polar molecule!. The vectorial character of the order param-
eter precludes the existence of order-order interfaces so that
the wetting properties characteristic of the interfaces in the
scalar modelC system will not be relevant. Instead, after a
temperature quench, topological defects with an integral
winding number are generated in the ordered phase.

To understand the phenomenology associated with this
system, we briefly discuss the planarXY model and the sca-
lar modelC system. In the planarXYmodel@O~2! s model#,
one can choose the directory such that uyu51 ~say,
yx5cosf and yy5sinf). The free-energy density becomes
f (f)5( l y

2/2)u“yu25( l y
2/2)(“f)2. The equilibrium equation

dF(f)/df50 leads to“2f50, so that the simplest non-
trivial solution independent ofr5Ax21y2 is

f5stan21S yxD1c, ~8!

where s561,62,63 . . . and 0<c,2p. If we follow a
path around the center, the director orientationf changes by
2ps. The integer numbers is thestrengthof the disclina-
tion, i.e., the topological charge of the vortex. The energy of
an isolated defect in a circular region of radiusL is then
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E5E E f ~f!dxdy5
l y
2

2E0
2p

duE
r c

L

rdr
s2

r 2

5p l y
2s2lnS Lr cD1Ec , ~9!

whereEc is the core energy of the defect andr c is the cutoff
radius around the defect. The energy density~sometimes
called ‘‘elastic’’ or ‘‘topological’’ energy! falls off like
s2/r 2, except inside the core. The total energy diverges loga-
rithmically with the distanceL, indicating that an isolated
defect in an infinite plane has infinite energy. However, this
situation does not arise, because the energy remains finite in
the presence of defects of opposite charge. The interaction
between two defects can be derived by substituting the solu-
tions ~8!, centered at two different points, into the expression
for the energy:

E5p l y
2~s11s2!

2lnS Lr cD22p l y
2s1s2lnS r 122r c

D , ~10!

with r c!r 12!L. If ( s11s2)50, the energy becomes inde-
pendent of L. The effective force between defects is
2p l y

2s1s2 /r 12 and is clearly long ranged. Note that while
defects of equal sign repel, defects of opposite sign attract
each other.

Convenient representations of the vectorial nature of the
order parameter can be obtained by plotting the familiar
‘‘Schlieren textures,’’ such as shown in the top panels of Fig.
1, for a vectorial modelC system withc051/3. Such pic-
tures are typically obtained by placing thin liquid-crystal
films between two crossed polarizers. Apart from the dark
spots, which correspond to domains of the disordered phase,
there are bright and dark regions. In the black brushes, the
director is either parallel or perpendicular to the plane of
polarization of the incident light. The polarization is thus
unchanged in these regions and consequently light is not
transmitted by the cross analyzer. The black brushes origi-

nating from the points correspond to line singularities per-
pendicular to the film, or to point singularities in the two-
dimensional case. The strength of a defect is defined as
s51/4 ~number of brushes!. The points that have four
brushes correspond to point disclinations with charge61
~vortices!, and are mostly centered in domains of the disor-
dered phase (c51 and uyu50), shown as black droplets in
the schlieren textures. In analogy to the liquid-crystal sys-
tem, the isotropic phase does not change the polarization.
However, unlike the nematic case, the droplets with two
brushes in our configurations have no topological charge.
This is because the absence of the ‘‘head-tail’’ asymmetry,
that characterizes the director of a nematic, does not allow
for defects with6(1/2) charge. The lower panels of Fig. 1
show the corresponding droplet morphology, indicating ex-
plicitly the charge of the domains.

We now discuss the role of the concentration on the do-
main morphology of the vector modelC system. For
c0.1/2, it is the minority phase that is ordered. As in the
case of the scalar modelC system, it forms isolated droplets.
The interior of these droplets is without defects, so that that
vectorial nature of the order parameter does not play a role.
However, its existence accounts for differences in the do-
main shapes with respect to the scalar modelC or the model
B systems, especially at early times. As Fig. 2 shows, the
domains are not quite circular but elongated and curved, and
sometimes branched. As time evolves, the elongation and
branching disappears and the domains become more circular.
Thus the late time regime is very similar to that of a model
B system. Separated domains only interact through long-
range diffusion, and remain unaware of the orientation of the
order parameter inside each droplet.

We now turn to the case wherec0,1/2, where the minor-
ity phase is the disordered phase. Typical configurations are
shown in Fig. 1. The continuous symmetry of the ordered
phase completely changes the morphology with respect to
the one obtained for the scalar order parameter. The absence
of order-order interfaces precludes the stripe shape for the
disordered domains, which now are droplets, as in the case

FIG. 1. Time evolution of the
system for c051/3 and l y51.
From left to right, times corre-
spond tot5500, 1500, and 2500.
Top panel: schlieren textures. The
gray scale is proportional to
uyu2sin2(2f). Bottom panel: Cor-
responding disordered domain
morphology indicating the sign of
the charged domains.
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with c0.1/2. Inside the disordered domainsuyu50 and thus
there is no elastic or topological energy. Since the vicinity of
a vortex is characterized by a large elastic energy density, the
free energy of the system is minimized if a disordered do-
main sits on top of a vortex. In this way, the location of the
vortices becomes coupled to the location of the concentration
droplets~with c51). Although not all the concentration do-
mains have vortices~i.e., there are ‘‘neutral’’ domains!, all
the vortices are inside concentration domains~‘‘charged’’
domains!. For an isolated defect with a disordered domain of
radiusR at the center, the energyE up to a distanceL from
the domain is

E5p l y
2s2lnS LRD12pRs2pR2D1Ec , ~11!

wheres is the surface tension~assumed independent of the
orientation ofy) andD is the supersaturation of the system.
In the expression above, the first term corresponds to the
elastic energy, the second term is the surface energy of the
domain and the third term is the volume free energy~here we
assume smallD). Thus the equilibrium equation]E/]R50
gives the following solutions:

RA5
s1As222l y

2s2D

2D
;

s

D
2
l y
2s2

2s
,

RB5
s2As222l y

2s2D

2D
;
l y
2s2

2s
2
l y
4s4D

4s3 , ~12!

where the second equalities are valid forD!1. The radius
RA corresponds to the usual critical radius for a supersatu-
rated domain, whileRB gives an estimate of the radius of the
defect core. As stated before, the free energy in~11! grows
with the size of the of the order of the separation between
defects. In any case, the expressions forRA andRB are not
modified significantly.

The effect of the ‘‘elastic’’ energy on the domain mor-
phology is shown in Fig. 3, which presents the normalized
domain size distribution functionf (R) at four different
times: 50, 100, 200, and 500~top to bottom!. The white
columns represent the size distribution function of charged
domains, the gray columns correspond to neutral domains,

and the black ones to the size distribution function of the
total number of domains~i.e., the sum of charged and neutral
domains!. At a very early time most of the domains are
formed in the proximity of defects, but as soon ast550 the
number of charged domains for a given radius is less than
50% of the total number of domains~i.e., the white column
is shorter than the underlying gray column!. This occurs for
all radii except for very large ones. Att550 the distributions
of white, gray, and black columns are similar. As time
evolves, the elastic energy enhances the growth of the
charged domains, such that the location of the peak of the
charged domain distribution shifts towards larger radii as
compared to the location of the peak of the gray and black
columns, i.e., neutral and total domain distributions. Note
that at late times,f (R) reflects the existence ofRB , as given
by Eq.~12!: a peak forR,2 develops att'200, persists and
grows in relative height at later times.

B. Growth

As discussed previously, forc0.1/2, the minority phase
is ordered and the growth at late times resembles that of a
modelB system. Growth takes place via long-range diffu-
sion, independent of the orientation of the order parameter
inside each of the domains. In fact, the measured growth
exponentn.0.30 is consistent withn51/3, which is char-
acteristic of the Lifshitz-Slyozov mechanism.

The situation is different forc0,1/2. The differences be-
tween the vectorial modelC, and that of a scalar modelC
become particularly clear in the limit of very small concen-
trations of the disordered phase. Here, the standard Lifshitz-
Slyozov mechanism is modified by two effects:~i! the exist-
ence of another length scaleRB ; and ~ii ! the long-range

FIG. 2. Evolution of the concentration domains forc052/3 and
l y51. The black domains represent ordered phase while the white
matrix represents disordered phase. The left configuration corre-
sponds tot5100 and the right one tot5800.

FIG. 3. Domain size distribution functionf (R) for the system
shown in Fig. 1. From top to bottom times correspond tot550,
100, 200, and 500. The white columns represent the size distribu-
tion function of charged domains, the underlying gray columns cor-
respond to neutral domains, and the bottom black columns to the
size distribution function of the total number of domains~i.e., the
sum of charged and neutral domains!.
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attractive forces between domains. The presence of another
length scale will not only modify the domain-size distribu-
tion function, but also the dynamics. AlthoughRB is gener-
ally smaller than the critical radius, domains of this size can-
not just disappear by the usual curvature driven diffusion
process, but have to coalesce with oppositely charged~or
neutral! domains. Similarly, the long-range attraction be-
tween oppositely charged defects also favors a coalescence
mechanism. Moreover, neutral domains are also attracted by
charged domains, since the disordered concentration do-
mains favor regions with large elastic energy. Thus coales-
cence mechanisms play a key role in the ordering.

Figure 4 shows a logarithmic plot of the different charac-
teristic length versus time forc051/3 and l y51. These
lengths have been defined in Sec. II. For the concentration
field, they are the first zero of the correlation function
^Rc&, the ‘‘inverse perimeter’’Lc , and the mean domain
radius^R&. For the order parameter, the lengths are^Ry& and
the ‘‘inverse perimeter’’Ly . All these measured lengths are
consistent with ann51/4 exponent, at least over times less
than;1000. A qualitative explanation of this exponent is the
following. Let S represent some characteristic distance be-
tween defects~e.g., ^Ry&, Ly , etc.!. According to Eq.~10!,
the interaction energy in a neutral~zero total charge! system
can be written as a sum of pair interactions:
E522p l y

2( i j sisj (@r i j /2r c#), with r c!r i j!L. The motion
of the defects is described by a Langevin equation:
]r i /]t52M (t)¹ iE, whereM (t) is a mobility that may
evolve in time. In terms of a characteristic length related to
the distance between defectsS, the Langevin equation can be
written as]S/]t;M (t)1/S. What is the functional form of
the mobilityM (t)? Every defect is trapped in a concentra-
tion domain, thus the defects can only annihilate by coales-
cence of domains. This means that the mobility of defects is
proportional to the mobility of the concentration domains,
which can only move through diffusion. Since the time evo-

lution of the concentration is described by a diffusion equa-
tion without hydrodynamics, the mobility of a domain of
radius R is inversely proportional to its volume. Thus
M (t);1/R(t)2 in 2d. As shown in Fig. 4, the characteristic
concentration length scaleR is proportional toS. Therefore,
the defect Langevin equation becomes]S/]t;1/S3, which
impliesS;t1/4. There are also charged domains that coalesce
with neutral domains. For the case of small domains, the part
of the energy that considers the attraction between a charged
domain and a neutral domain of radiusRn separated by a
distanceS is En}2Rn

2/S2 so that ]S/]t;(1/Rn
2)]En /]S.

This again givesS;t1/4, subject to possible logarithmic cor-
rections.

The results forl y54 are consistent with those in Fig. 4.
At any given time the numbers of droplets and of defects in
the l y54 systems are fewer than that in thel y51 systems:
the energy cost produced by the terml y

2u“yu2 in the free-
energy favors, for largerl y’s a higher rate of coalescence of
droplets and a faster elimination of defects.

Although our results are clearly consistent with an
n51/4 growth exponent, at late times the system might cross
over ton51/3 Lifshitz-Slyozov type growth. Over most of
the time scales probed by our simulations, the dynamics is
dominated by the coalescence and annihilation of defects.
However, long-range diffusion, which is always acting, can
be expected to play more and more of a role as the number of
defects present in the system becomes less and less. At some
point, the concentration of defects becomes negligible and
the dynamics will then cross over. While we have not been
able to probe this time regime effectively with the computer
resources currently available to us, there is some evidence
indicating a possible crossover. Fort'1500 and higher, the
effective exponent increases fromn51/4 ton'0.30, which
is not inconsistent with Lifshitz-Slyozov type of growth.

IV. SUMMARY

In this paper we have investigated the dynamics of a
modelC system characterized by a two-component vectorial
order parameter and a coupled concentration variable, fol-
lowing a temperature quench from its high-temperature dis-
ordered state into the order-disorder coexistence region. Be-
cause of the vectorial nature of the order parameter, the
existence of order-order interfaces is precluded. Rather, vor-
tices with integral charge are generated by the order param-
eter field. The specific domain morphology obtained is de-
pendent upon the mean concentrationc0.

If c0.1/2, the minority phase is the ordered phase. Here,
isolated droplets, inside which complete order of the vecto-
rial field is achieved, form. The presence of the vectorial
nature of the order parameter manifests itself chiefly in the
shape of the domains. Initially these tend to be elongated,
bent and sometimes branched. At late times they assume a
more circular shape, characteristic of modelC andB sys-
tems. Growth of the domains takes place via long-range dif-
fusion with a measured growth exponent consistent with an
n51/3 exponent.

If c0,1/2, the minority phase is the disordered one. The
domains of the disordered phase are now droplets, where the
order parameter hasuyu50. There is no elastic energy inside

FIG. 4. Average length scales as function of time. For the con-
centration field, they are the first zero of the correlation function
^Rc& ~white triangle!, the ‘‘inverse perimeter’’Lc ~black triangle!,
and the mean domain radius^R& ~circle!. For the order parameter,
the lengths arêRy& ~white square!, and the ‘‘inverse perimeter’’
Ly ~black square!.

4780 54SOMOZA, SAGUI, AND ROLAND



these droplets. Since the regions close to a vortex are char-
acterized by large elastic energy densities, it is energetically
favorable for vortices to center themselves on the disordered
domains. As a consequence, the growth is dominated by the
coalescence and annihilation of defects. Both the attraction
between oppositely charged domains, and the attraction be-
tween neutral and charged domains, contribute to this effect.
Droplets upon which the defect cores are centered contribute
to this effect. The coalescence mechanism is characterized
by n;1/4, and possibly may crossover ton;1/3 at very late
times when the number of charged domains becomes negli-

gible and the dominant mechanism of growth reverts to that
of long-range diffusion.
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