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We have investigated the time evolution of a vectorial mdgisystem following a temperature quench from
the disordered state into the order-disorder coexistence region, with numerical Langevin simulations. The
system is characterized by a vectorial, honconserved order parameter coupled to a conserved quantity such as
a concentration. Two different ordering mechanisms are observed. If the mean concemtyasan>1/2,
then the minority phase is tr@deredphase and growth is driven by long-range diffusion. On the other hand,
if c,<1/2, then it is thedisorderedphase that is in the minority. In this case, defects of the order parameter
(vortices are strongly coupled to that of the position of the disordered phase. Growth takes place primarily via
the diffusion and coalescence of the defects, giving rise to=at/4 growth exponent over a significant time
regime.[S1063-651X96)09911-4

PACS numbd(s): 64.60.Cn, 05.70.Ln

I. INTRODUCTION types of interfaces are formed and, for a given concentration,
the ratio of the associated surface tensions determines the
In recent years, there has been great interest in the dynamorphology[8].
ics of defects created during a symmetry-breaking phase In this paper, we investigate the interesting changes that
transition[1]. Typically, an instability produces topological arise in such a system, when the nature of the nonconserved
defects following a quench into the broken symmetry phaseorder parameter changes from that o$alar, to that of a
The subsequent time evolution, or dynamics of ordering, isrector. This change is important because systems with a vec-
characterized by an annealing away of these defg;8: tor order parameter generate a different type of defects,
the free energy of the system is reduced as the density afamely, vortices, which in this case are coupled to the do-
defects decreases. The nature of the order parameter, toain walls generated by the concentration variable. As we
gether with the conservation laws associated with it, detershall discuss, this changes the dynamics of the system over a
mine the growth laws of the characteristic length scales osignificant time regime. Such a simplified model should be
the system, as well as the associated scaling functions.  relevant for a number of experimental systems. For instance,
The growth laws and scaling function for systems characa mixture of isotropic fluids and two-dimensional nematics
terized by a single order parameter have been, for the mo§®] and smectidz liquid crystal thin films[10], constrained
part, determined and understof®]. For example, for a sys- by surfaces so that the director is approximately planar may
tem with a scalar, nonconserved order paraméterdel A be adequately represented by this model. Wengl. [9]
[4]), the relevant topological defects are the domain walls ohave in fact studied the coarsening behavior of two lyotropic
interfaces separating the different ordered phases. The aliquid-crystal systems that were quenched from the isotropic
nealing away of these interfaces is driven by curvature, anghase into either the nematic phase or a region of coexistence
the average domain siz&(t) obeys a power-law growth between nematic and isotropic phases. In the coexistence re-
R~t" with growth exponenn=1/2 [5]. If the system in- gion, both in two and three dimensions, they observed Po-
volves a scalar, conserved order paramétendel B), then rod’'s power-law behavior for the structure factor:
growth takes place via the classical Lifshitz-Slyozov mechaS(q)~q~(@*%) for large wave vectors,, whered is the di-
nism of long-ranged diffusion with growth exponemt1/3  mension of the system. This has been understood in terms of
[6]. the scattering from the domains walls. Other systems, where
However, more complicated phenomenology arises whenur model may apply, include thin films of Hede* mix-
the system is characterized by more than one order parantdres, mixtures of ferro- and paramagnets, and mixtures of
eter. In such cases, defects of a more complex nature fornsmecticA and smecticz liquid crystals. We also note that a
and the nature of the dynamics is changed significantly. Theimilar model was used to investigate growth of polycrystal-
simplest of such cases arises when the system is charactdinre material[11]. In the latter study, the vector field was
ized by both a scalar, nonconserved order parameter andused to model the orientation of the local lattice structure,
scalar, conserved quantity such as a concentration. This sitand the concentration variable the local atomic composition.
ation may describe, for instance, metal alloys in which the The system we consider exhibits both a stable disordered
nonconserved order parameter is associated with the symmand a stable continuously degenerate ordered ph8ke
try of the alloy[7]. When such a system is quenched into theThus, the free-energy minimum corresponding to the high-
order-disorder coexistence region of its phase diagram, twtemperature minimum is also a minimum after a quench into
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the order-disorder coexistence region, so that only very larggrowth. Section IV is reserved for a summary and conclu-
fluctuations in the vectorial order parameter could drive thesions.
system to the degenerate ordered state. However, if one al-
lows for differences in an associated concentration field, or Il. MODEL
some other related quantity, then a spinodal region can be o _
created and phase separation will take place following a tem- We begin with the Ginzburg-Landau free enefd§]
perature quench. A situation like this is described by a model
C system[4], and is to be contrasted with that of a model
A andB system, where the disordered minimum of the freeF[(ﬁ’lZ]:J dr[ %@ V()| 2+ %Ifﬁ[V¢(r)]2+f(¢,zZ)],
energy becomes unstable after a quench. In that case, the
system is driven towards the equilibrium ordered states, @
which have a reduced symmetry. In modelsystems, the . " L
disordered state is still stable after a quench, but the couplin here[Vy[*=2_,"(V) (Vi) and f(¢,4) is the bulk
of the order parameter to a conserved quantity such as KE€-€nergy density,
concentration makes the disordered phase unstable in the as-
sociated spinodal region. Transitions to the ordered states - R - -
therefore become allowed. f(p, ) =3¢+ ulg|*+0vg]°

The high-temperature, disordered phase of a two- 1 —1,2 >0
dimensional modeC system with a vectorial order param- T2xn ¢Sl A )
eter has continuous 2 symmetry. Suppose that such a
system is quenched into the ordered part of the phase di
gram (i.e., below the\ line, but above the first-order coex-
istence lineg and that the coupling between the order pa-

rameter and concentration is very weak. Then, th / - ) )
continuous symmetry would be broken into Besymmetry concentration. The phase dlagrgm for this system is well
known [19]. A mean field analysis reveals that the system

and the system would behave like a plan&aX, model. The has a line of first-order phase transitions at

typical topological defects of this system are vortices, i.e.,

pointlike disclinations with an integral winding numdéi2].

These systems have been studied in the interesting context of T=r+2Ayy,=0, 3)
two-dimensional melting, where the mechanism driving the
phase transition from disorder to order is the pairing, and
annihilation, of individual vortices and a continuous transi-
tion takes the system to quasi-long-range orgks]. Re-
cently, there has been a number of computational investig
tion of theXY model and other related systefigl—17. The
work by Pargellis, Green, and Yurk#&4] includes an experi-
mental realization of the planafyY system by means of a
confined nematic liquid crystal. When the spins are allowe

o . S X r>0, U>0) into the coexistence region. The units of en-
to relax via linear damping from an initial random configu-

. . e rgy, concentration and order parameter of this model may
ration, the system is expected to anneal diffusively so tha ; X X i
) . : S all be rescaled to give a dimensionless free-energy density
the squared correlation length is proportional to time; assu

ing randomly distributed defects, the expected defect deca il
exponent is1=1. However, as Yurket al.[18] pointed out,

Here 1,7; is a vectorial, nonconserved order parameter with
m componentsg is the coupled conserved concentration,
and r,u,v,xn,7.l,, andl, are system parameters with
U, Xnily.l4>0). A is the chemical potential related to the

U=u—3 y’x,>0. (4

8 his line ends in a tricritical point at=0,u=0. There is also

a line of second-order phase transitionst afr = (U %/2v)
andu<0. We investigated the dynamics of this system fol-
owing a temperature quench from the disordered phase

due to the presence of frictional forces, there exist logarith- 12
mic corrections to these scaling laws. flev)=IvI2(1= V12 2+ alc+ V2= 1)2+ S (Vc)?
In this paper, we shall show how the usud&Y planar (Y =IIFA=5 F aterlyl ) 2( )

model scenario gets dramatically modified when one allows 2
coexistence with a disordered phase, in the presence of a +—y|Vy|2. (5)
concentration variable, i.e., we will investigate quenches into 2
the order-disorder region of the phase diagram. We show that
there exists a parameter regime in which the defects of thklerey andc are the rescaled vectorial order parameter and
order parametefthe vortice$ couple strongly to the position concentration, respectively. The model is given in terms of
of the disordered phase. This changes the dominant mechtiree positive constantst, |, andl,. We fix =4 and
nism of ordering from that of long-range diffusion or select the unit of length such thatl,=1, but allow for
Lifshitz-Slyozov growth to one of defect annihilation over a variations inl, . The local free energy is a three-dimensional
significant time regime. function with coexisting minima ind,|y|)=(1,0) (the dis-

A brief summary of the structure of the paper is as fol-ordered phaseand (c,|y|)=(0,1) (a continuously degener-
lows. Section Il discusses the model and gives details of thate ordered phage
simulations; in Sec. lll, we present the results with an em- The dynamics of the phase separation process is described
phasis upon the droplet morphology created and theiby the coupled Langevin equations
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the ordered phase correspondste0, y==*1, and the dis-

ac , 9ty L, | :

A [T—%V C|+&, (6)  ordered phase to=1, y=0. It is now well established that
the morphology depends upon whether the minority phase is
ordered or disordered, as well as on the wetting properties of

ay oty the intgrfaces. Fory>1/2, the minority phase is prdered and

-y 7y —IyV2y +&, (7)  forms isolated droplets. The order parameter inside each of

these isolated droplets can take on either a positive or nega-

where ¢ and &, are stochastic variables obeying the tiv_e value, irrespective of the value inside other domains. In
fluctuation-dissipation relation. In this study, we neglect thetiS case, the degeneracy of the ordered state does not play a
thermal noisg20] and set the mobilitie$’.=T',=1. qualitatively |m_portant rol_e in the o_rderlng process. Simi-
The Langevin equations were solved numerically USmdarly, changes m_the wetting proper'qes of thg mtt_erface; are
Euler's method on two-dimensional grids of linear sizealso not dramatic. A completely different situation arises
L=1024 and 512, with periodic boundary conditions. Thewhen the minority phase is the disordered ong<(1/2). In
spatial mesh size and integration time step were chosen to [§Bis case, an ordered domain can grow to an infinite size,
Ax=1.0 andAt=0.01, respectively. Further reduction of percolating throughout the system. Long-range order is not
these sizes did not change the solutions in any significarachieved, and order-order interfaces can persist in the sys-
way. While systems of different sizes were simulated, mostem, even at very late times. The morphology itself depends
of our results were obtained for systems of length512, upon the wetting properties of the interfaces in important
which displayed good self-averaging properties. The initialays. In the complete wetting regimé, 0.79), two or-
values of each component pfwere chosen from a Gaussian dered domains having different signs in the order parameter
distribution of zero mean and a second moment of 0.1, whilewrre separated by a macroscopic, disordered wetting layer.
the initial values of thec’'s were specified by a similar The disordered domains tend to surround the ordered do-
Gaussian distribution, but centered about the valyle To  mains and percolate throughout the system. Their morphol-
probe the different morphologies, single runs were carriethgy corresponds to that of elongated stripes with a few
outforco=1/3 and 2/3, and\,=0.8, 1, 2, and 4. Atleast five  shrinking droplets, instead of a droplet morphology. In the
independent runs were performed for each of the sets of Partial drying regime I(,<0.60), an ordered domain prefers
rametersco=1/3,1,=1; andco=1/3,1,=4. _ _to be in contact with another ordered domain, instead of a
For each simulation, we computed the pair correlationyisordered one. The disordered domains therefore no longer
functions for both the conserved variali@and the noncon- g .5nd the ordered domains, and therefore adopt a more

served order parametgr These are, respectively, defined compact shape. The intermediate case<0,6<0.79) corre-
as Cg(r,t)=([c(0t)—collc(r,t)—col) and Cy(r,t)= ds to th tial wetti ;

(y(0}t)-y(r,t)), where the angle brackets indicate an en->PONas to the partial wetting regime. .
yiv, A For the vectorial modeC, the situation is different. As in

semble average. With the circularly averaged values of thes, .
correlation functions, we were able to calculate two typicalt%e planarXy model, the directoy may be thought of as

length scalesR (t) and Ry(t) associated with each of the representing a two-dlmenglonal magnetization vectora
variablesR(t) was defined as the first zero of the pair cor- Polar molecul The vectorial character of the order param-
relation functionCe(r,t), andR(t) as the value of for eter pret_:ludes the _eX|stence of Qrder-order _mterfaces SO that
which C,(t) takes on half of its value at the origin in the the wetting properties characterlstlc of the interfaces in the
scaling regime. Two other distances obtained from the corScalar modelC system will not be relevant. Instead, after a
relation functions areL.(t)=1[1—C(01)/C,], where temperature quench, topological defects with an integral
Co=Co(1—Cp) is the theoretical value &€(0t) in the scal-  Winding number are generated in the ordered phase.
ing regime; and Ly(t)=—-1[1-C,(0)/Y,], with To understand the phenomenology associated with this
Y,=1-c,. These distances are similar to the inverse perimsystem, we briefly discuss the planéy model and the sca-
eter densities used in other simulation studies as a measul@ modelC system. In the planaXY model[O(2) o modell,

of the average domain size. Other quantities computed inene can choose the directoar such that|y|=1 (say,
clude the mean radius, the radius of gyration, and the topoy,=cosp andy,=sin¢). The free-energy density becomes

logical charge of each domain. f(q&)=(I§/2)|Vy|2=(I§/2)(V ¢)2. The equilibrium equation
SF () 84=0 leads toV2¢p=0, so that the simplest non-
IIl. RESULTS AND DISCUSSION trivial solution independent af= \/x?>+y? is
A. Morphology

In this section, we discuss the role of the continuous sym- $=stan ! y tc ®)
metry of the ordered phase on the domain morphology. To
better understand the phenomenology associated with a vec-
torial modelC, we first review the scalar mod€l and the
planarXY model, concentrating on the relevant physical fea-wheres=*+1,+2+3 ... and Gsc<2s. If we follow a
tures in these systems that contribute to the morphology gbath around the center, the director orientatipohanges by
the vectorial modeC. 2s. The integer numbes is thestrengthof the disclina-

We begin by discussing the results of the scalar modetfion, i.e., the topological charge of the vortex. The energy of
C (see, for exampld 8] and references therginn this case, an isolated defect in a circular region of radiuss then
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FIG. 1. Time evolution of the
system for c,=1/3 and I,=1.
From left to right, times corre-
spond tot=500, 1500, and 2500.
Top panel: schlieren textures. The
gray scale is proportional to
ly|?sir’(2¢). Bottom panel: Cor-
responding disordered domain
morphology indicating the sign of
the charged domains.

pendicular to the film, or to point singularities in the two-
dimensional case. The strength of a defect is defined as
s=1/4 (number of brushgs The points that have four
+Ec, (9 brushes correspond to point disclinations with charge
(vorticeg, and are mostly centered in domains of the disor-
whereE, is the core energy of the defect andis the cutoff  dered phaseg=1 and|y|=0), shown as black droplets in
radius around the defect. The energy dengitgmetimes the schlieren textures. In analogy to the liquid-crystal sys-
called “elastic” or “topological” energy falls off like tem, the isotropic phase does not change the polarization.
s?/r2, except inside the core. The total energy diverges logaHowever, unlike the nematic case, the droplets with two
rithmically with the distancel, indicating that an isolated brushes in our configurations have no topological charge.
defect in an infinite plane has infinite energy. However, thisThis is because the absence of the “head-tail” asymmetry,
situation does not arise, because the energy remains finite that characterizes the director of a nematic, does not allow
the presence of defects of opposite charge. The interactidior defects with=(1/2) charge. The lower panels of Fig. 1
between two defects can be derived by substituting the soluishow the corresponding droplet morphology, indicating ex-
tions (8), centered at two different points, into the expressionplicitly the charge of the domains.
for the energy: We now discuss the role of the concentration on the do-
main morphology of the vector modeC system. For
Co>1/2, it is the minority phase that is ordered. As in the
case of the scalar mod€l system, it forms isolated droplets.
The interior of these droplets is without defects, so that that
vectorial nature of the order parameter does not play a role.
with r.<r,<L. If (s;+5,)=0, the energy becomes inde- However, its existence accounts for differences in the do-
pendent of L. The effective force between defects is main shapes with respect to the scalar mddl@r the model
2w|§slszlr12 and is clearly long ranged. Note that while B systems, especially at early times. As Fig. 2 shows, the
defects of equal sign repel, defects of opposite sign attractomains are not quite circular but elongated and curved, and
each other. sometimes branched. As time evolves, the elongation and
Convenient representations of the vectorial nature of théranching disappears and the domains become more circular.
order parameter can be obtained by plotting the familiarThus the late time regime is very similar to that of a model
“Schlieren textures,” such as shown in the top panels of Fig.B system. Separated domains only interact through long-
1, for a vectorial modelC system withcy=1/3. Such pic- range diffusion, and remain unaware of the orientation of the
tures are typically obtained by placing thin liquid-crystal order parameter inside each droplet.
films between two crossed polarizers. Apart from the dark We now turn to the case wheeg<<1/2, where the minor-
spots, which correspond to domains of the disordered phasiy phase is the disordered phase. Typical configurations are
there are bright and dark regions. In the black brushes, thehown in Fig. 1. The continuous symmetry of the ordered
director is either parallel or perpendicular to the plane ofphase completely changes the morphology with respect to
polarization of the incident light. The polarization is thus the one obtained for the scalar order parameter. The absence
unchanged in these regions and consequently light is naif order-order interfaces precludes the stripe shape for the
transmitted by the cross analyzer. The black brushes origdisordered domains, which now are droplets, as in the case

|§ 27 L g2 nating from the points correspond to line singularities per-
E:j f f(¢)dxdy= Efo dajr rdrr—z

L

= wlf,szln —
r

C

L r
E=mlj(s;+ sz)zln(a) - 2w|§slszln<2—rc) . (10
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FIG. 2. Evolution of the concentration domains fy=2/3 and
I,=1. The black domains represent ordered phase while the white
matrix represents disordered phase. The left configuration corre- L
sponds ta =100 and the right one to=800.
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0.0

with c,> 1/2. Inside the disordered domaily$=0 and thus 0.05F _
there is no elastic or topological energy. Since the vicinity of
a vortex is characterized by a large elastic energy density, the g
free energy of the system is minimized if a disordered do- 00—t e B.F .
main sits on top of a vortex. In this way, the location of the © 2 4+ 8 8 10 12 14
vortices becomes coupled to the location of the concentration
droplets(with c=1). Although not all the concentration do- FIG. 3. Domain size distribution functiof(R) for the system
mains h_ave vortic_eé_.e., there are ‘_‘neutral” domainsall shown-in.Fig. 1. From top to bottom times correspond £c50,

the V‘?”'CGS arellnS|de Concentr:?ltlon QOma(hsharged”. 100, 200, and 500. The white columns represent the size distribu-
domaing. For an isolated defect with a disordered domain ofijo function of charged domains, the underlying gray columns cor-
radiusR at the center, the enerdy up to a distancé from  respond to neutral domains, and the bottom black columns to the
the domain is size distribution function of the total number of domaiie., the

sum of charged and neutral domains

+27Ro— mR?A+Eq, (11 and the black ones to the size distribution function of the
total number of domaing.e., the sum of charged and neutral

whereo is the surface tensiofassumed independent of the domains. At a very early time most of the domains are
orientation ofy) andA is the supersaturation of the system. formed in the proximity of defects, but as soontas50 the

In the expression above, the first term corresponds to thBUmber of charged domains for a given radius is less than
elastic energy, the second term is the surface energy of ted% of the total number of domairise., the white column
domain and the third term is the volume free eneftgre we 1S shorter than the underlying gray columithis occurs for

assume smald). Thus the equilibrium equationE/gR=0 @l radii except for very large ones. A&50 the distributions
gives the following solutions: of white, gray, and black columns are similar. As time

evolves, the elastic energy enhances the growth of the
charged domains, such that the location of the peak of the
‘H'm o | 532 charged domain distribution shifts towards larger radii as
Ra= ~—_——= compared to the location of the peak of the gray and black
2A A 20 columns, i.e., neutral and total domain distributions. Note
that at late timesf(R) reflects the existence &y, as given
by Eq.(12): a peak folR<2 develops at~ 200, persists and
grows in relative height at later times.

R

E= wl§szln

72 522 2.2 |44
o—A\o 2|ySA~|yS_IySA

2A 20 453"

B. Growth

where the second equalities are valid for€1. The radius As discussed previously, far,>1/2, the minority phase

R, corresponds to the usual critical radius for a supersatuis ordered and the growth at late times resembles that of a
rated domain, whil&kg gives an estimate of the radius of the model B system. Growth takes place via long-range diffu-
defect core. As stated before, the free energylit) grows  sion, independent of the orientation of the order parameter
with the size of the of the order of the separation betweerinside each of the domains. In fact, the measured growth
defects. In any case, the expressionsRgrandRg are not  exponentn=0.30 is consistent witm=1/3, which is char-
modified significantly. acteristic of the Lifshitz-Slyozov mechanism.

The effect of the “elastic” energy on the domain mor-  The situation is different focy<<1/2. The differences be-
phology is shown in Fig. 3, which presents the normalizedween the vectorial model, and that of a scalar modé€l
domain size distribution functiorf(R) at four different become particularly clear in the limit of very small concen-
times: 50, 100, 200, and 50Qop to bottom. The white trations of the disordered phase. Here, the standard Lifshitz-
columns represent the size distribution function of chargedlyozov mechanism is modified by two effects: the exist-
domains, the gray columns correspond to neutral domaingnce of another length scalRg; and (ii) the long-range
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1000 —r——rr L e L - lution of the concentration is described by a diffusion equa-
tion without hydrodynamics, the mobility of a domain of
radius R is inversely proportional to its volume. Thus
M (t)~1/R(t)? in 2d. As shown in Fig. 4, the characteristic
concentration length scak is proportional toS. Therefore,
E the defect Langevin equation becom#s/ gt~ 1/S®, which
1 impliesS~tY4 There are also charged domains that coalesce
with neutral domains. For the case of small domains, the part
of the energy that considers the attraction between a charged
domain and a neutral domain of radii separated by a
] distanceS is E,x—R2/S? so that 9/t~ (1/R2)JE,/9S.
] This again givesS~t** subject to possible logarithmic cor-
] rections.
A A | The results fol =4 are consistent with those in Fig. 4.
At any given time the numbers of droplets and of defects in
11— ‘i"m EE— '1’0'00 : thel,=4 systems are fewer than that in thffl systems:
time the energy cost produced by the tef@th| in the free-
energy favors, for largel,’s a higher rate of coalescence of
FIG. 4. Average length scales as function of time. For the condroplets and a faster elimination of defects.
centration field, they are the first zero of the correlation function Although our results are clearly consistent with an
(R.) (white triangle, the “inverse perimeter’L (black triangle, n=1/4 growth exponent, at late times the system might cross
and the mean domain radigR) (circle). For the order parameter, over ton=1/3 Lifshitz-Slyozov type growth. Over most of
the lengths aréR,) (white squarg and the “inverse perimeter” the time scales probed by our simulations, the dynamics is
Ly (black squark dominated by the coalescence and annihilation of defects.
) , However, long-range diffusion, which is always acting, can
attractive forces between domains. The presence of anothgp, expected to play more and more of a role as the number of
length scale will not only modify the domain-size distribu- yefects present in the system becomes less and less. At some
tion function, but also the dynamics. Althou@t IS gener-  ,,int the concentration of defects becomes negligible and
ally _smallq than the critical radius, domains Of.thIS Siz€ Canyhe gynamics will then cross over. While we have not been
not just disappear by the usual curvature driven diffusiorhpe to probe this time regime effectively with the computer
process, but have to coalesce with oppositely chai@ed | oqqrces currently available to us, there is some evidence

neutra) domains. Similarly, the long-range attraction be-jjicating a possible crossover. For 1500 and higher, the
tween oppositely charged defects also favors a coalescenggr. tive exponent increases fram= 1/4 ton~0.30, which

mechanism. Moreover, neutral domains are also attracted q¥ not inconsistent with Lifshitz-Slyozov type of growth
charged domains, since the disordered concentration do- '

mains favor regions with large elastic energy. Thus coales-
cence mechanisms play a key role in the ordering.

Figure 4 shows a logarithmic plot of the different charac-
teristic length versus time foc,=1/3 andl,=1. These In this paper we have investigated the dynamics of a
lengths have been defined in Sec. Il. For the concentratiomodelC system characterized by a two-component vectorial
field, they are the first zero of the correlation function order parameter and a coupled concentration variable, fol-
(Rc), the “inverse perimeter”L., and the mean domain lowing a temperature quench from its high-temperature dis-
radius(R). For the order parameter, the lengths @Rg) and  ordered state into the order-disorder coexistence region. Be-
the “inverse perimeter'L, . All these measured lengths are cause of the vectorial nature of the order parameter, the
consistent with am=1/4 exponent, at least over times less existence of order-order interfaces is precluded. Rather, vor-
than~1000. A qualitative explanation of this exponent is thetices with integral charge are generated by the order param-
following. Let S represent some characteristic distance beeter field. The specific domain morphology obtained is de-
tween defectge.g.,(R,), L, etc). According to Eq.(10),  pendent upon the mean concentratipn
the interaction energy in a neutri@ero total chargesystem If co>1/2, the minority phase is the ordered phase. Here,
can be written as a sum of pair interactions:isolated droplets, inside which complete order of the vecto-
E=—2w|§2ijsisj([rij/2rc]), with r.<r;;<L. The motion rial field is achieved, form. The presence of the vectorial
of the defects is described by a Langevin equationnature of the order parameter manifests itself chiefly in the
arilot=—M(t)V;E, where M(t) is a mobility that may shape of the domains. Initially these tend to be elongated,
evolve in time. In terms of a characteristic length related tdbent and sometimes branched. At late times they assume a
the distance between defe@sthe Langevin equation can be more circular shape, characteristic of mo€@land B sys-
written asgS/gt~M(t)1/S. What is the functional form of tems. Growth of the domains takes place via long-range dif-
the mobility M(t)? Every defect is trapped in a concentra-fusion with a measured growth exponent consistent with an
tion domain, thus the defects can only annihilate by coalesn=1/3 exponent.
cence of domains. This means that the mobility of defects is If cy<1/2, the minority phase is the disordered one. The
proportional to the mobility of the concentration domains,domains of the disordered phase are now droplets, where the
which can only move through diffusion. Since the time evo-order parameter hag|=0. There is no elastic energy inside
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these droplets. Since the regions close to a vortex are chagible and the dominant mechanism of growth reverts to that
acterized by large elastic energy densities, it is energeticallgf long-range diffusion.

favorable for vortices to center themselves on the disordered

domains. As a consequence, the growth is dominated by the
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